Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.598
Filtrar
1.
Cell Commun Signal ; 22(1): 239, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654309

RESUMO

Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.


Assuntos
Bactérias , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Bactérias/efeitos dos fármacos , Animais , Terapia Viral Oncolítica , Vírus/efeitos dos fármacos
2.
Virus Res ; 344: 199368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588924

RESUMO

Several viruses are now known to code for deubiquitinating proteases in their genomes. Ubiquitination is an essential post-translational modification of cellular substrates involved in many processes in the cell, including in innate immune signalling. This post-translational modification is regulated by the ubiquitin conjugation machinery, as well as various host deubiquitinating enzymes. The conjugation of ubiquitin chains to several innate immune related factors is often needed to induce downstream signalling, shaping the antiviral response. Viral deubiquitinating proteins, besides often having a primary function in the viral replication cycle by cleaving the viral polyprotein, are also able to cleave ubiquitin chains from such host substrates, in that way exerting a function in innate immune evasion. The presence of viral deubiquitinating enzymes has been firmly established for numerous animal-infecting viruses, such as some well-researched and clinically important nidoviruses, and their presence has now been confirmed in several plant viruses as well. Viral proteases in general have long been highlighted as promising drug targets, with a current focus on small molecule inhibitors. In this review, we will discuss the range of viral deubiquitinating proteases known to date, summarise the various avenues explored to inhibit such proteases and discuss novel strategies and models intended to inhibit and study these specific viral enzymes.


Assuntos
Enzimas Desubiquitinantes , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/genética , Humanos , Proteases Virais/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinação , Animais , Replicação Viral , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Vírus/efeitos dos fármacos , Vírus/enzimologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Ubiquitina/metabolismo , Imunidade Inata
3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520159

RESUMO

AIMS: Airborne transmission of diseases presents a serious threat to human health, so effective air disinfection technology to eliminate microorganisms in indoor air is very important. This study evaluated the effectiveness of a non-thermal plasma (NTP) air disinfector in both laboratory experiments and real environments. METHODS AND RESULTS: An experimental chamber was artificially polluted with a bioaerosol containing bacteria or viruses. Additionally, classroom environments with and without people present were used in field tests. Airborne microbial and particle concentrations were quantified. A 3.0 log10 reduction in the initial load was achieved when a virus-containing aerosol was disinfected for 60 min and a bacteria-containing aerosol was disinfected for 90 min. In the field test, when no people were present in the room, NTP disinfection decreased the airborne microbial and particle concentrations (P < 0.05). When people were present in the room, their constant activity continuously contaminated the indoor air, but all airborne indicators decreased (P < 0.05) except for planktonic bacteria (P = 0.094). CONCLUSIONS: NTP effectively inactivated microorganisms and particles in indoor air.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Bactérias , Desinfecção , Gases em Plasma , Desinfecção/métodos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Humanos , Gases em Plasma/farmacologia , Aerossóis , Desinfetantes/farmacologia , Vírus/efeitos dos fármacos , Vírus/isolamento & purificação
4.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632670

RESUMO

New strategies to rapidly develop broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses. Host-targeting antivirals (HTAs) that target the universal host factors necessary for viral replication are the most promising approach, with broad-spectrum, foresighted function, and low resistance. We and others recently identified that host dihydroorotate dehydrogenase (DHODH) is one of the universal host factors essential for the replication of many acute-infectious viruses. DHODH is a rate-limiting enzyme catalyzing the fourth step in de novo pyrimidine synthesis. Therefore, it has also been developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancers, autoimmune diseases, and viral or bacterial infections. Significantly, the successful use of DHODH inhibitors (DHODHi) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection further supports the application prospects. This review focuses on the advantages of HTAs and the antiviral effects of DHODHi with clinical applications. The multiple functions of DHODHi in inhibiting viral replication, stimulating ISGs expression, and suppressing cytokine storms make DHODHi a potent strategy against viral infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Di-Hidro-Orotato Desidrogenase , Viroses , Vírus , Antivirais/farmacologia , Antivirais/uso terapêutico , Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Humanos , Pirimidinas , SARS-CoV-2/efeitos dos fármacos , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos
5.
Nucleic Acids Res ; 50(W1): W272-W275, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35610052

RESUMO

Viruses can cross species barriers and cause unpredictable outbreaks in man with substantial economic and public health burdens. Broad-spectrum antivirals, (BSAs, compounds inhibiting several human viruses), and BSA-containing drug combinations (BCCs) are deemed as immediate therapeutic options that fill the void between virus identification and vaccine development. Here, we present DrugVirus.info 2.0 (https://drugvirus.info), an integrative interactive portal for exploration and analysis of BSAs and BCCs, that greatly expands the database and functionality of DrugVirus.info 1.0 webserver. Through the data portal that now expands the spectrum of BSAs and provides information on BCCs, we developed two modules for (i) interactive analysis of users' own antiviral drug and combination screening data and their comparison with published datasets, and (ii) exploration of the structure-activity relationship between various BSAs. The updated portal provides an essential toolbox for antiviral drug development and repurposing applications aiming to identify existing and novel treatments of emerging and re-emerging viral threats.


Assuntos
Antivirais , Bases de Dados de Produtos Farmacêuticos , Vírus , Humanos , Antivirais/farmacologia , Combinação de Medicamentos , Desenvolvimento de Medicamentos , Vírus/efeitos dos fármacos , Software , Internet
6.
Chem Commun (Camb) ; 58(18): 2954-2966, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170594

RESUMO

A new supramolecular approach to broad spectrum antivirals utilizes host guest chemistry between molecular tweezers and lysine/arginine as well as choline. Basic amino acids in amyloid-forming SEVI peptides (semen-derived enhancers of viral infection) are included inside the tweezer cavity leading to disaggregation and neutralization of the fibrils, which lose their ability to enhance HIV-1/HIV-2 infection. Lipid head groups contain the trimethylammonium cation of choline; this is likewise bound by molecular tweezers, which dock onto viral membranes and thus greatly enhance their surface tension. Disruption of the envelope in turn leads to total loss of infectiosity (ZIKA, Ebola, Influenza). This complexation event also seems to be the structural basis for an effective inihibition of cell-to-cell spread in Herpes viruses. The article describes the discovery of novel molecular recognition motifs and the development of powerful antiviral agents based on these host guest systems. It explains the general underlying mechanisms of antiviral action and points to future optimization and application as therapeutic agents.


Assuntos
Antivirais/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Envelope Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos , Amiloidose/prevenção & controle , Antivirais/farmacologia , Humanos , Vírus/patogenicidade
7.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163084

RESUMO

International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.


Assuntos
Anti-Infecciosos/farmacologia , COVID-19/prevenção & controle , Materiais Revestidos Biocompatíveis/farmacologia , Metais/química , Tato , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , COVID-19/transmissão , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Humanos , Pandemias , Equipamento de Proteção Individual/microbiologia , Equipamento de Proteção Individual/virologia , SARS-CoV-2/efeitos dos fármacos , Propriedades de Superfície , Vírus/efeitos dos fármacos
8.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163090

RESUMO

The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.


Assuntos
Anti-Infecciosos , Metais/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , COVID-19/prevenção & controle , Equipamentos e Provisões , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Humanos , Pandemias/prevenção & controle , Saúde da População , SARS-CoV-2/fisiologia , Vírus/efeitos dos fármacos , Vírus/patogenicidade
9.
Carbohydr Res ; 513: 108517, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35152128

RESUMO

The synthesis of five series of 4'-truncated nucleoside phosphonic acid analogues is discussed in this review: (1) 4'-truncated furanose nucleoside phosphonic acid analogues; (2) 4'-truncated pyrrolidine nucleoside phosphonic acid analogues; (3) 4'-truncated carbocyclic nucleoside phosphonic acid analogues; (4) 4'-truncated isoxazole nucleoside phosphonic acid analogues; (5) 4'-truncated miscellaneous nucleoside phosphonic acid analogues. Five different ways are used to make the phosphonate moiety: (i) Michaelis-Arbuzov reaction of RX (X = Br, I, OTf) with trialkyl phosphate; (ii) Lewis acid catalyzed Michaelis-Arbuzov reaction of glycoside with trialkyl phosphite; (iii) nucleophilic addition of a dialkyl phosphite to a carbonyl group; (iv) direct coupling reaction with amino alkyl phosphonate; (v) de novo synthesis of phosphonated-isoxazole and 1,3-dioxolane heterocycles from phosphonated starting materials. Their biological activity results are briefly discussed.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Enzimas/metabolismo , Nucleosídeos/farmacologia , Ácidos Fosforosos/farmacologia , Vírus/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Configuração de Carboidratos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Testes de Sensibilidade Microbiana , Nucleosídeos/síntese química , Nucleosídeos/química , Ácidos Fosforosos/síntese química , Ácidos Fosforosos/química
10.
Viruses ; 14(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35215894

RESUMO

Viral diseases consistently pose a substantial economic and public health burden worldwide [...].


Assuntos
Antivirais/farmacologia , Viroses/tratamento farmacológico , Humanos , Viroses/virologia , Fenômenos Fisiológicos Virais , Vírus/classificação , Vírus/efeitos dos fármacos , Vírus/genética
11.
Viruses ; 14(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35215947

RESUMO

Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from Flaviviridae, Phenuiviridae, Rhabdoviridae, and Herpesviridae families. Diphyllin is not cytotoxic for Vero and BHK-21 cells up to 100 µM and exerts a sub-micromolar or low-micromolar antiviral activity against tick-borne encephalitis virus, West Nile virus, Zika virus, Rift Valley fever virus, rabies virus, and herpes-simplex virus type 1. Our study shows that diphyllin is a broad-spectrum host cell-targeting antiviral agent that blocks the replication of multiple phylogenetically unrelated enveloped RNA and DNA viruses. In support of this, we also demonstrate that diphyllin is more than just a vacuolar (H+)ATPase inhibitor but may employ other antiviral mechanisms of action to inhibit the replication cycles of those viruses that do not enter host cells by endocytosis followed by low pH-dependent membrane fusion.


Assuntos
Antivirais/farmacologia , Lignanas/farmacologia , Vírus/efeitos dos fármacos , Animais , Antígenos Virais/metabolismo , Antivirais/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Lignanas/síntese química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Vírus/classificação , Vírus/metabolismo
12.
Viruses ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216019

RESUMO

In the current context of the COVID-19 pandemic, it appears that our scientific resources and the medical community are not sufficiently developed to combat rapid viral spread all over the world. A number of viruses causing epidemics have already disseminated across the world in the last few years, such as the dengue or chinkungunya virus, the Ebola virus, and other coronavirus families such as Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV). The outbreaks of these infectious diseases have demonstrated the difficulty of treating an epidemic before the creation of vaccine. Different antiviral drugs already exist. However, several of them cause side effects or have lost their efficiency because of virus mutations. It is essential to develop new antiviral strategies, but ones that rely on more natural compounds to decrease the secondary effects. Polysaccharides, which have come to be known in recent years for their medicinal properties, including antiviral activities, are an excellent alternative. They are essential for the metabolism of plants, microorganisms, and animals, and are directly extractible. Polysaccharides have attracted more and more attention due to their therapeutic properties, low toxicity, and availability, and seem to be attractive candidates as antiviral drugs of tomorrow.


Assuntos
Antivirais/química , Antivirais/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Vírus/efeitos dos fármacos , Animais , Surtos de Doenças/prevenção & controle , Ebolavirus/efeitos dos fármacos , Humanos , SARS-CoV-2/efeitos dos fármacos , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Vírus/classificação , Vírus/patogenicidade
13.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164173

RESUMO

Viral infections and outbreaks have become a major concern and are one of the main causes of morbidity and mortality worldwide. The development of successful antiviral therapeutics and vaccines remains a daunting challenge. The discovery of novel antiviral agents is a public health emergency, and extraordinary efforts are underway globally to identify safe and effective treatments for different viral diseases. Alkaloids are natural phytochemicals known for their biological activities, many of which have been intensively studied for their broad-spectrum of antiviral activities against different DNA and RNA viruses. The purpose of this review was to summarize the evidence supporting the efficacy of the antiviral activity of plant alkaloids at half-maximum effective concentration (EC50) or half-maximum inhibitory concentration (IC50) below 10 µM and describe the molecular sites most often targeted by natural alkaloids acting against different virus families. This review highlights that considering the devastating effects of virus pandemics on humans, plants, and animals, the development of high efficiency and low-toxicity antiviral drugs targeting these viruses need to be developed. Furthermore, it summarizes the current research status of alkaloids as the source of antiviral drug development, their structural characteristics, and antiviral targets. Overall, the influence of alkaloids at the molecular level suggests a high degree of specificity which means they could serve as potent and safe antiviral agents waiting for evaluation and exploitation.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antivirais/química , Antivirais/farmacologia , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Alcaloides/uso terapêutico , Animais , Antivirais/uso terapêutico , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Replicação Viral/efeitos dos fármacos
14.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008974

RESUMO

Despite the great strides in healthcare during the last century, some challenges still remained unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics have been under the lenses of the researchers. This review aims to focus on synthetic peptides and elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents. Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection since peptides can influence several steps along the virus life cycle starting from viral receptor-cell interaction to the budding. Besides their mode of action, improvements in manufacturing to increase their half-life and performances are also taken into consideration together with advantages and impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches is making them a promising tool to counteract emerging infections.


Assuntos
Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Vírus/efeitos dos fármacos , Antibacterianos , Antifúngicos , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Biomarcadores , Técnicas de Química Sintética , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
16.
Biomed Res Int ; 2022: 1558860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35039793

RESUMO

Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 µg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 µg/mL. Moreover, Metadichol® had an EC90 of 0.00037 µM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 µM) and chloroquine (EC50 = 1.14 µM), respectively.


Assuntos
Álcoois Graxos/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Vírus/efeitos dos fármacos , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Ésteres/farmacologia , Guanidinas/farmacologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/química , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Inibidores de Serino Proteinase/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
17.
J Mol Biol ; 434(6): 167327, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34695379

RESUMO

The DDR consists of multiple pathways that sense, signal, and respond to anomalous DNA. To promote efficient replication, viruses have evolved to engage and even modulate the DDR. In this review, we will discuss a select set of diverse viruses and the range of mechanisms they evolved to interact with the DDR and some of the subsequent cellular consequences. There is a dichotomy in that the DDR can be both beneficial for viruses yet antiviral. We will also review the connection between the DDR and innate immunity. Previously believed to be disparate cellular functions, more recent research is emerging that links these processes. Furthermore, we will discuss some discrepancies in the literature that we propose can be remedied by utilizing more consistent DDR-focused assays. By doing so, we hope to obtain a much clearer understanding of how broadly these mechanisms and phenotypes are conserved among all viruses. This is crucial for human health since understanding how viruses manipulate the DDR presents an important and tractable target for antiviral therapies.


Assuntos
Dano ao DNA , Reparo do DNA , Imunidade Inata , Vírus , Antivirais/farmacologia , Humanos , Imunidade Inata/genética , Replicação Viral , Vírus/efeitos dos fármacos , Vírus/imunologia
18.
Biochim Biophys Acta Biomembr ; 1864(2): 183821, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808121

RESUMO

Membrane-enveloped viruses are a major cause of global health challenges, including recent epidemics and pandemics. This mini-review covers the latest efforts to develop membrane-targeting antiviral peptides that inhibit enveloped viruses by 1) preventing virus-cell fusion or 2) disrupting the viral membrane envelope. The corresponding mechanisms of antiviral activity are discussed along with peptide engineering strategies to modulate membrane-peptide interactions in terms of potency and selectivity. Application examples are presented demonstrating how membrane-targeting antiviral peptides are useful therapeutics and prophylactics in animal models, while a stronger emphasis on biophysical concepts is proposed to refine mechanistic understanding and support potential clinical translation.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Internalização do Vírus , Vírus/efeitos dos fármacos , Animais , Humanos
19.
J Med Chem ; 65(2): 935-954, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33970631

RESUMO

Viral infections are a major health problem; therefore, there is an urgent need for novel therapeutic strategies. Antivirals used to target proteins encoded by the viral genome usually enhance drug resistance generated by the virus. A potential solution may be drugs acting at host-based targets since viruses are dependent on numerous cellular proteins and phosphorylation events that are crucial during their life cycle. Repurposing existing kinase inhibitors as antiviral agents would help in the cost and effectiveness of the process, but this strategy usually does not provide much improvement, and specific medicinal chemistry programs are needed in the field. Anyway, extensive use of FDA-approved kinase inhibitors has been quite useful in deciphering the role of host kinases in viral infection. The present perspective aims to review the state of the art of kinase inhibitors that target viral infections in different development stages.


Assuntos
Antivirais/uso terapêutico , Reposicionamento de Medicamentos/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Animais , Humanos , Viroses/virologia
20.
Biomed Res Int ; 2021: 7872406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926691

RESUMO

Viruses are responsible for a variety of human pathogenesis. Owing to the enhancement of the world population, global travel, and rapid urbanization, and infectious outbreaks, a critical threat has been generated to public health, as preventive vaccines and antiviral therapy are not available. Herbal medicines and refined natural products have resources for the development of novel antiviral drugs. These natural agents have shed light on preventive vaccine development and antiviral therapies. This review intends to discuss the antiviral activities of plant extracts and some isolated plant natural products based on mainly preclinical (in vitro and in vivo) studies. Twenty medicinal herbs were selected for the discussion, and those are commonly recognized antiviral medicinal plants in Ayurveda (Zingiber officinale, Caesalpinia bonducella, Allium sativum, Glycyrrhiza glabra, Ferula assafoetida, Gymnema sylvestre, Gossypium herbaceum, Phyllanthus niruri, Trachyspermum ammi, Withania somnifera, Andrographis paniculata, Centella asiatica, Curcuma longa, Woodfordia fruticose, Phyllanthus emblica, Terminalia chebula, Tamarindus indica, Terminalia arjuna, Azadirachta indica, and Ficus religiosa). However, many viruses remain without successful immunization and only a few antiviral drugs have been approved for clinical use. Hence, the development of novel antiviral drugs is much significant and natural products are excellent sources for such drug developments. In this review, we summarize the antiviral actions of selected plant extracts and some isolated natural products of the medicinal herbs.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Plantas Medicinais/química , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...